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Abstract. We investigate the sensitivity of the semileptonic processes e+e− → `−ν̄` q q̄′, ` = e or µ, on the
non-standard trilinear gauge couplings, using the optimal observables method at Linear Collider energies.
Our study is based on the four-fermion generator ERATO. Taking into account all possible correlations
between the different trilinear gauge coupling parameters, we show that they can be measured with an
accuracy of 10−3 to 10−4 for typical Linear Collider energies and luminosities.

The future e+e− linear colliders (LC), with energies rang-
ing from a few hundreds of GeV up to a couple of TeV,
provide particle physics with an enormous potential for
studying Nature to the deepest level ever achieved [1]. Al-
though at these energies direct searches for new particles
and their interactions will eventually attract most of the
physics interest, LC offer also the unique possibility to
study to an extremely high accuracy, the properties of the
existing particles, like those of the massive electroweak
gauge bosons W and Z. Therefore, an important project
at the LC energies will be the determination of the trilin-
ear gauge couplings (TGC) [2,3], which are a character-
istic manifestation of the underlying non-Abelian symme-
try of elementary particle interactions [4] and at the same
time an interesting probe of New Physics (NP).

In order to study the TGC we need a parameterization
of the vector gauge boson interactions that goes beyond
the Standard Model. The most general such parameteri-
zation is given by [5]:
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∑
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where

Vµν = ∂µVν − ∂νVµ, W±
µν = ∂µW±

ν − ∂νW±
µ ,

and
Vµν =

1
2
εµνρσVρσ.

In (1) W± is the W -boson field, and the usual definitions
gγW W = 1, gZW W = ctg θw are used. In the Standard
Model we have gγ

1 = gZ
1 = 1, κγ = κZ = 1, while all the

other parameters are vanishing at tree level. In searching
for possible TGC, it is more convenient to express them in
terms of their deviations from the Standard Model values.
For this we define the deviation parameters [5,6]:

δZ = (gZ
1 − 1)ctg θw xγ = κγ − 1

xZ = (κZ − 1)ctg θw − δZ , (2)

while we throughout assume gγ
1 = 1, disregarding the pos-

sibility of an anomalous contribution to the electromag-
netic form factor of W±. We note that the NP contribution
described by the interaction Lagrangian in (1), becomes
linear when expressed in terms of the above deviation pa-
rameters and λγ , λZ , as well as the C- and P-violating
couplings.

During the last years, considerable progress has been
achieved concerning the understanding of the physics un-
derlying the non-standard boson self-couplings. As showed
in [7], the deviations from the Standard Model TGC cou-
plings can be parameterized in a manifestly gauge-inva-
riant way by using the effective Lagrangian approach and
considering gauge-invariant operators involving higher-di-
mensional interactions among the gauge bosons and the
Higgs field. These operators are scaled by an unknown pa-
rameter ΛNP describing the characteristic scale of some
high energy New Physics, generating at low energies the
effective interaction LTGC as a residual effect. In order to
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generate all kinds of TGC appearing in (1), we need op-
erators with dimension up to twelve. On the other hand,
restricting ourselves to SU(2)L × U(1)Y -invariant opera-
tors with dimension six, which are the lowest order ones
in a 1/ΛNP expansion, we end up with the following list
of operators capable to induce TGC NP couplings [8–11,
13,14]:

OBΦ = iBµν(DµΦ)†(DνΦ)

OWΦ = i(DµΦ)† τ · W µν(DνΦ)

OW =
1
3!

(W µ
ρ × W ρ

ν) · W ν
µ (3)

and1

ÕBW = Φ† τ

2
· W̃

µν
ΦBµν

ÕW =
1
3!

(W µ
ρ × W ρ

ν) · W̃
ν

µ , (4)

where

B̃µν =
1
2
εµνρσBρσ , W̃

µν
=

1
2
εµνρσW ρσ . (5)

In (3) and (4), τi describe the Pauli matrices,

Bµν = ∂µBν − ∂νBµ

is the U(1)Y gauge field strength,

W µν = ∂µW ν − ∂νW µ − gW µ × W ν

is the field strength for the SU(2)L gauge field W µ, and
the Higgs doublet is written as

Φ =
(

φ+

1√
2
(v + H + iφ0)

)
,

while Dµ is the covariant derivative

Dµ = ∂µ + i g
τ

2
· W µ + i g′Y Bµ ,

and Y is the hypercharge of the field on which Dµ acts.
Finally e = g sin θw = g′ cos θw.

In the list of (3, 4), we have included all dim=6 purely
bosonic operators contributing to the trilinear gauge in-
teractions, except those which give also a tree level con-
tribition to LEP1 observables, (and of course those which
give no TGC at all). This constitutes part of a consistent
general strategy for searching for any purely bosonic NP
interaction. According to this strategy, the measurement
of TGC provides the most efficient way to study the op-
erators appearing in (3, 4), while the rest of dim=6 opera-
tors can be most efficiently disentagled and constrained ei-
ther by high precision measurements (LEP1), or by study-
ing other production processes at LC [9,12,13] and high-
energy hadronic colliders2.

1 The most complete list of CP violating dim=6 purely
bosonic operators is given in [13]. Concerning them we note
that the TGC couplings generated by ÕBW , are identical to
those induced by the operators 2ÕBΦ/g or 2ÕWΦ/g′, defined
as the CP violating analogs of OBΦ and OWΦ respectively

2 This is particularly needed for the gluon involving opera-
tors; (see [14])

The New Physics contribution from the above opera-
tors is described by the effective Lagrangian

LTGC = g′ αBΦ

m2
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where the relations between αWΦ, αBΦ, αW , α̃BW , α̃W ,
and the deviation parameters of (2) are given by

δZ = αWΦ/ (sin θw cos θw) xγ = αBΦ + αWΦ

λγ = αW xZ = − tan θwxγ λZ = λγ

κ̃γ = α̃BW λ̃γ = α̃W

κ̃Z = − tan2 θwκ̃γ λ̃Z = λ̃γ . (7)

As it is seen from (7), the restriction to New Physics gen-
erated by dim=6 gauge invariant operators, implies that
there are only five independent non-standard triple gauge
couplings, three of which are CP-conserving [15] and two
CP-violating.

In order to study the effect of TGC, one usually con-
siders the reaction e+e− → W+W−, taking into account
the subsequent decay of the two W ’s to a four-fermion
final state [6]. Such final states can be classified in three
categories, namely the ‘leptonic’ `−

1 ν̄`1`
+
2 ν`2 , the ‘semilep-

tonic’ `−ν̄` qq̄′ and the ‘hadronic’ channel q1q̄
′
1q̄2q

′
2, (where

q and q′ refer to up- and down-type quarks respectively).
Semileptonic seems to be the most favoured channel [5] for
studying TGC, since it contains the maximum kinemat-
ical information; taking into account that charge-flavour
identification in a four jet channel is rather inefficient and
that the cross section for the leptonic mode is suppressed.
Thus, in the present paper we study at LC energies, the
TGC effect induced by the interaction (6) in the processes

e+e− → `−ν̄` qq̄′ (8)

where ` is an electron or a muon. The final state τ ν̄τ qq̄′
is not considered here, due to the special difficulties to
identify τ ’s in this environment.

Quite often, the four-fermion final state processes, (8),
are calculated by just taking into account contributions
from the e+e− → W+W− subprocess, which is equivalent
to a narrow width approximation ΓW → 0. In the classi-
fication of the four-fermion production diagrams of [16],
these graphs are termed as the double-resonant graphs
CC03. Such a narrow width approximation neglects con-
tributions from single-resonant graphs, which become in-
creasingly important at higher energies, (at least in some
parts of the phase space) [16–19]. The situation is particu-
larly severe for final states involving e±, where graphs like
the one presented in Fig. 1, which involves a t-channel
photon exchange, dominate in certain parts of the phase-
space at higher energies. Moreover, the graph of Fig. 1
receives contributions from the trilinear gauge boson in-
teractions which are not included in the e+e− → W+W−
calculation. In order to perform an analysis, as complete
as possible, it is therefore mandatory to include in the
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Fig. 1. Single-resonant graph where TGC are contributing

calculation of the processes (8) all tree-order diagrams,
resonant as well as non-resonant ones.

Nowadays this is possible, since there exist widely avail-
able four-fermion codes, where the TGC effects are in-
cluded beyond the narrow width approximation [5,17,18].
In the calculations presented in this paper we have used
for this purpose, the ERATO Monte-Carlo event generator
described in [16,17,20]. The basic ingredients of this gen-
erator are the following:

1. Exact tree-order helicity amplitudes for the processes
e+e− → `−ν̄` qq̄′, including all trilinear gauge interac-
tions described by (1) [17,21].

2. Phase-space generation algorithm based on a multi-
channel Monte Carlo approach, including weight opti-
mization [22].

3. Treatment of the unstable particles contribution con-
sistent with gauge-invariance and high-energy unitar-
ity [17,23,24].

4. Initial state radiation (ISR), based on the structure
function approach [25], including soft-photon exponen-
tiation as well as hard collinear photon emission in the
leading logarithmic (LL) approximation up to order
O(α2).

5. Coulomb correction3 to the double resonant (CC03)
graphs.

6. Beamstrahlung effects have also been included via the
‘κί%κη’ algorithm [26].

Apart from the beamstrahlung effects just mentioned,
the treatment of the higher order corrections in the present
study is the same as in the LEP2 case.

In order to avoid matrix element singularities and to
be as close as possible to the experimental situation, we
have applied the cuts

175o ≥ (θ` , θjet) ≥ 5o, E` ≥ 10 GeV ,

Ejet ≥ 10 GeV and mq,q̄′ ≥ 15 GeV . (9)

Finally, we use the Standard Model input parameters

MW = 80.23 GeV, ΓW = 2.033 GeV,
MZ = 91.188 GeV, ΓZ = 2.4974 GeV,
sin2 θw = 0.23103 and α(MZ) = 1/128.07 ,

(10)

while in the ISR structure function α = 1/137.036 is of
course used. For the analysis of the beamstrahlung effects
we have used the TESLA design.

In order to determine the sensitivity of a given reac-
tion on the TGC parameters one has to maximize the

3 For a detailed description see [25]

likelihood function [28], whose logarithm is given by

lnLML =
N∑
i

ln p(Ωi,a) , (11)

where the sum is running over the event sample under
investigation. Ωi represents the collection of the indepen-
dent kinematical variables describing the i-th event, the
vector a is defined in the coupling space as a = (αWΦ, αBΦ,
αW , α̃BW , α̃W ), and

p(Ωi,a) =
1
σ

dσ

dΩ

∣∣∣
|Ω=Ωi

, (12)

σ =
∫

V

dσ

dΩ
dΩ , (13)

is the probability to find an event at the phase-space point
Ωi. Since the interaction Lagrangian is linear with respect
to the TGC parameters, one can write the differential
cross section in the form

dσ

dΩ
= c0(Ω) +

∑
i

aic1,i(Ω) +
∑
i,j

aiajc2,ij(Ω) (14)

and similarly the total cross section as

σ = ĉ0 +
∑

i

aiĉ1,i +
∑
i,j

aiaj ĉ2,ij , (15)

where hatted c’s are integrals of unhatted ones over the
phase space.

The sensitivity on the TGC parameters is determined
by the so-called information matrix [29] given by the sec-
ond derivative of the likelihood function,

Iij ≡ E

[ (
∂

∂ai
lnLML

) (
∂

∂aj
lnLML

) ]

= −E

[
∂

∂ai

∂

∂aj
lnLML

]
(16)

where

E[A] =
∫ N∏

i=1

{dΩi p0(Ωi)}A(Ω1, ..., ΩN ) (17)

represents the mean value of a function A(Ω1, ..., ΩN ). If
we assume that the maximum of the likelihood function is
located at a = 0, which reflects the physical expectation
that the ‘data’ will be consistent with the Standard Model,
the information matrix is given to the lowest order, by
Iij = NBij , with

Bij ≡
〈

c1,i

c0

c1,j

c0

〉
0

−
〈

c1,i

c0

〉
0

〈
c1,j

c0

〉
0

(18)

and
〈A〉0 =

∫
dΩ p0(Ω) A(Ω) , (19)
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p0(Ω) =
1
σ

dσ

dΩ

∣∣∣∣
a=0

. (20)

In the optimal observables approach [30], equivalent
results are obtained by defining the phase-space functions

Oi =
c1,i(Ω)
c0(Ω)

(21)

called optimal observables, whose mean values and covari-
ance matrix determine the sensitivity on the TGC param-
eters. More specifically one writes

āi =
∑

j

B−1
ij (〈Oj〉 − 〈Oj〉0)

as an unbiased estimator of the components of a, while
the corresponding covariance matrix is given by

V (ā) =
1
N

B−1 · V (O) · B−1

with V (O) defined by

V (O)ij = 〈OiOj〉 − 〈Oi〉〈Oj〉 ,

and

〈A〉 =
∫

dΩ p(Ω) A(Ω) .

Under the assumption that the ‘data’ are accounted for
by the Standard Model, we have that V (O) = B, which
shows that to the lowest order, the likelihood approach
and the optimal observables are indeed equivalent.

Up to now we have considered the so called Maximum
Likelihood method. One can improve the analysis by con-
sidering also the so called Extended Maximum Likelihood
(EML). In this case we take into account the variation of
the total number of expected events as a function of the
unknown parameters and define

LEML = pN

N∏
i

p(Ωi,a) , (22)

where

pN =
〈N〉N

N !
e−〈N〉

and 〈N〉 is the number of expected events. The analysis
proceeds as before and the correlation matrix is expressed
as

Bi,j =
〈

c1,i

c0

c1,j

c0

〉
0

(23)

while the information matrix becomes Iij = 〈N〉Bi,j . The
corresponding optimal observables in the EML approach
are

Oi = N
c1,i(Ω)
c0(Ω)

. (24)

In the sequel we perform one- as well as five-dimensional
investigations. One-dimensional investigations assume that

all but one of the ai’s are non-vanishing, and lead to pa-
rameter errors (1sd) given by

δai =
1√
Nbii

. (25)

The multidimensional case where all five NP couplings are
considered simultaneously, is also treated. Diagonalizing
then the symmetric correlation matrix B, one first deter-
mines its eigenvalues λi and eigenvectors ei, normalized
so that ei · ej = δij . For each ei, the parameter

aD
i ≡ ei · a (26)

is then defined, for which the (1sd) error is given by

δaD
i =

1√
Nλi

. (27)

In all calculations presented in this paper, N is taken
to be the predicted Standard Model number of events de-
fined by N = 4 L σSM , where σSM is the corresponding
total cross section, L is the integrated luminosity and the
factor 4 takes into account the four equivalent channels de-
scribed by the same matrix elements; i.e. e+e− → `−ν̄` ud̄,
`−ν̄` cs̄, `+ν` dū and `+ν` sc̄.

At this point we address the question, how accurately
the optimal observables approximation describes the ML
(or EML) function. To this end we calculate the lnLML

by replacing the sum appearing in (11) by an integral over
the expected probability distribution which is assumed to
be the one predicted by the Standard Model

lnLML = N

∫ N∏
i=1

{dΩi p0(Ωi)} ln p(Ωi,a) . (28)

It is clear that optimal observables and ML methods be-
come identical in the limit N → ∞, since then only the
leading term in the expansion of the likelihood function
survives; and this is exactly the term proportional to the
information matrix. On the other hand for relatively low
statistics, the nonlinearity of the likelihood function be-
comes important and the optimal observables approxi-
mation breaks down. These features are shown in Fig.
2, where the one, and two standard deviation limits on
(αBΦ, αWΦ) are considered, for the muon channel and√

s = 800 GeV. In the upper part of the figure the value
of the integrated luminosity is taken to be L = 50 fb−1,
which is the expected nominal value, whereas in the lower
part a much lower luminosity, L = 5 fb−1, has been used.

We have checked that for all nominal LC energies and
luminosities, the optimal observables approximation gives
identical results to those of the conventional likelihood
approach. Furthermore the fact that the expected sensi-
tivities on the TGC parameters are predominantly deter-
mined by the linear terms in the expansion of the differ-
ential cross section, (14), shows the self-consistency of our
original assumption that a parameterization of TGC in
terms of dim=6 operators should be adequate.

On the other hand, from the point of view of a weighted
Monte-Carlo approach, which is frequently used in the
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Fig. 2. The one (solid) and two (dashed)
standard deviations limits on αBΦ-αWΦ, using
the optimal observables and the EML methods
for

√
s = 800 GeV and unpolarized beams.

In the upper part optimal observables and
EML are hardly distinguishable, whereas in
the lower part EML exhibits a secondary
minimum

phenomenological analyses, the optimal observables method
offers a very efficient fast and economic way to estimate
not only the sensitivity of a given process on a single TGC
parameter (or any kind of ‘deviation’ parameter), but also
their full covariance matrix, which is of great importance
for multiparameter analyses.

Finally we would like to mention that the general ex-
perimental problem of how to overcome the ISR as well
as the detector resolution induced difficulties in the recon-
struction of the event kinematics, is not addressed here.
We only note that this problem exists also for the current
LEP2 experiments and that detailed experimental simu-
lations at linear collider energies can be found in the pro-
ceedings of the DESY-ECFA Workshop on Linear Collid-
ers [27]. Moreover our experience from LEP2 studies [5]
shows that, despite the abovementioned problem, a very
good estimate of the sensitivity on the TGC can be ob-
tained by an analysis of the kind used in our present study.

In Table 1 we present the results for the correlation
matrix Bij involving all CP-conserving and CP-violating
couplings, at 500 GeV center of mass energy. The total
cross sections are also presented. As is evident from this
table, the correlations between the different ai’s are not
negligible in general, which suggests that an analysis tak-
ing them into account, is indispensable.

Another very interesting result, is that electron and
muon channels exhibit a complementary behaviour: elec-
tron channel gives the highest production rate, which
means a better statistics, whereas the muon-channel ex-
hibits a higher sensitivity on TGC.

In Table 2 we show the eigenvalues of the correlation
matrix, as well as the corresponding eigenvectors. These
eigenvectors define directions in the five-parameter space,
which are uncorrelated, so that parameter errors can be
safely extracted. This table shows that for the unpolarized
beams case, the dominant eigenvalues correspond to direc-
tions in the five-parameter space related predominantly to
αW , αWΦ, and α̃W , whereas the lowest ones are related
to αBΦ and α̃BW . The picture becomes almost opposite
in the case that the electron (positron) beams are right-
(left)-polarized.

As far as the polarization is concerned, we see that
passing from unpolarized to right-polarized electron-beam,
results to a much higher sensitivity for αBΦ and α̃BW cou-
plings. These phenomena are much more pronounced for
the muon-channel. This effect, which has been also ob-
served in on shell studies of e−e+ → W−W+ [32], reflects
the fact that different TGC parameters contribute to dif-
ferent helicity amplitudes, especially in the high-energy
regime. In Fig. 3 we show how the information from both
polarizations can, in principle, be used to disentangle dif-
ferent TGC parameters, based on the fact that the corre-
sponding covariance matrices are very different.

Finally in Table 3 one-standard-deviation errors are
presented by combining electrons and muons as

Bij = B(e)
ij

σ(e)

σ(e) + σ(µ) + B(µ)
ij

σ(µ)

σ(e) + σ(µ) ,

N = 4L(σ(e) + σ(µ)) .

In our studies, L is taken to be 20 fb−1 at 500 GeV, 10
fb−1 at 360 GeV and 50 fb−1 at 800 GeV. For the results
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Table 1. The correlation matrix for e and µ channels at 500 GeV for the TGC parameters
αWΦ, αBΦ, αW , α̃BW , α̃W . Also shown are the cross sections as well as their Monte Carlo errors in
femptobarns. Here PRL(PLR) corresponds to e−

Re+
L (e−

Le+
R) initial state polarization

PLR + PRL PRL

e 14.53 4.87 3.26 -0.0032 -0.27 9.66 -10.20 0.33 0.59 0.027
4.87 3.67 0.33 0.016 -0.072 -10.20 70.33 -0.11 -1.80 -0.096
3.26 0.33 20.75 -0.011 0.38 0.33 -0.11 3.50 0.012 -0.016
-0.0032 0.016 -0.01 0.28 -0.78 0.59 -1.80 0.012 6.66 0.22
-0.27 -0.072 0.38 -0.78 21.53 0.027 -0.096 -0.016 0.22 3.46

456(5) 207(5)

µ 23.33 7.33 5.66 0.013 -0.060 258.42 -513.87 12.94 -1.35 -0.12
7.33 5.25 0.71 0.033 -0.054 -513.87 2478.22 -9.50 12.36 0.28
5.66 0.71 33.00 -0.032 0.29 12.94 -9.50 2.71 0.27 -0.0013
0.013 0.033 -0.032 0.28 -1.33 -1.35 12.36 0.27 178.16 12.11
-0.060 -0.054 0.29 -1.33 33.85 -0.12 0.28 -0.0013 12.11 2.67

267(2) 6.01(4)

Table 2. The eigenvalues (2nd and 8th columns) and the corresponding eigenvectors of the correlation matrices given
in Table 1

e µ

PLR 22.49 -0.425 -0.124 -0.868 0.008 -0.220 36.10 -0.460 -0.129 -0.872 0.004 -0.099
+ 21.54 0.149 0.0477 0.167 0.035 -0.972 33.90 0.003 0.002 -0.007 0.039 -0.999
PRL 14.71 0.813 0.344 -0.463 -0.002 0.061 22.88 0.816 0.320 -0.479 0.0005 0.018

1.77 -0.366 0.929 0.046 0.011 -0.002 2.60 -0.343 0.938 0.041 0.010 0.001
0.25 0.004 -0.010 -0.0006 0.999 0.036 0.22 0.002 -0.010 0.0007 0.999 0.039

PRL 72.06 0.161 -0.986 0.002 0.028 0.001 2591.53 0.215 -0.976 0.004 -0.005 -0.0001
8.07 -0.963 -0.163 -0.067 -0.198 -0.011 178.98 -0.040 -0.003 -0.004 -0.996 -0.068
6.56 -0.199 -0.0043 -0.018 0.977 0.068 145.96 0.973 0.214 0.073 -0.040 -0.003
3.48 0.062 0.007 -0.894 -0.034 0.440 1.87 0.068 0.010 -0.935 -0.022 0.346
3.44 -0.028 -0.003 0.440 -0.059 0.895 1.83 -0.024 -0.003 0.346 -0.064 0.935

concerning polarized beam scattering, we used

Lpolarized =
1
4

Lunpolarized .

In order to study the effect of the correlations among the
TGC parameters we distinguish two cases:

– The 1d-case is based on the very strong and often
made assumption that only one of the TGC param-
eters (αWΦ, αBΦ, αW , α̃BW , α̃W ) is non vanishing.
A very contrived form of NP at high energy scale is
needed, in order to create such a situation where only
one of the operators appearing in (3,4) is generated at
low energies [31]. This case corresponds to the ‘one-
dimensional log-likelihood fit’.

– In the 5d-case, on the contrary, the errors are calcu-
lated according to (27), where the full correlation ma-
trix is taken into account and no a priori assumption
on the size of the parameters has been made. Although

in this case the presented errors correspond to direc-
tions in the five-parameter space defined by (26), which
are not generally identical to the ones defined by the
original parameters, we kept the same notation, since
the former are rather close to the latter: for instance
αD

WΦ is mainly composed by αWΦ and so on for the
other TGC parameters [33].

As it is seen from Table 3, moving from the 1d-case to
the 5d-case, the change on the one-standard-deviation er-
rors reach the level of 40%. Moreover the less sensitive the
TGC parameter is, the more the correlations affect its er-
ror. It should be mentioned however that the correlations
among the different TGC parameters do not dramatically
change the order-of-magnitude estimate of their sensitiv-
ity based on single-parameter considerations.

Concerning the CP violating interactions, we should
note that in [34], bounds on the CP-violating couplings
κ̃γ and λ̃γ have been derived, on the basis of their contri-
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Fig. 3. The one (solid) and two (dashed)
standard deviations limits on αBΦ-αWΦ for
unpolarized and polarized (e−

Re+
L) beams.

The inner lines are from electron channel
whereas the outer ones are from muon
channel

Table 3. One standard deviation errors on TGC parameters.
At 500 GeV we show also the effect of the correlations be-
tween different five TGC parameters in the 5d case for unpo-
larized beams, whereas in parentheses we show the correspond-
ing errors from a right-handed polarized (left-handed) electron
(positron) beam, as explained in the text

√
s (GeV) 360 500 800

1d 1d 5d 1d
αWΦ 0.0018 0.00098 0.00098 0.00042

(0.0037) (0.0045)
αBΦ 0.0039 0.0020 0.0028 0.00083

(0.0013) (0.0012)
αW 0.0016 0.00082 0.00081 0.00031

(0.0082) (0.0082)
α̃BW 0.011 0.0078 0.0084 0.0048

(0.0045) (0.0044)
α̃W 0.0016 0.00081 0.00079 0.00031

(0.0082) (0.0083)

bution to the electric dipole moment (EDM) of the meu-
tron. Besides the fact that these bounds depend on several
details, the most they imply is a strong linear relation be-
tween κ̃γ and λ̃γ . Direct measurements of these couplings,
as well as of their Z-boson counterparts, will therefore be
useful because they will provide detail information on the
whole CP-violating TGC parameter-space.

In studying the sensitivity on the TGC one usually ne-
glects possible correlations with other electroweak param-

eters like for instance the non-standard contributions to
V ff̄ vertices, where V stands for Z or W . This is rather
well justified because the latter are usually much more
constrained than the former as it is indeed the case at
LEP2, where TGC determination is expected to reach the
level of 0.01 to 0.1, compared with the constraints on the
V ff̄ couplings coming mainly from LEP1 analysis, which
are at the level of 10−3 [35]. On the other hand, as it is also
suggested by our analysis, at LC energies the TGC can be
tested to a precision much higher than that of LEP2, and
therefore it becomes interesting to study the correlations
among the TGC and the other electroweak couplings [36,
37].

Finally we would like to mention that a detailed com-
parison of our study with those presented in [6,32] based
on the on-shell production e−e+ → W−W+ is not pos-
sible, due mainly to the fact that we are using different
analysis methods. Nevertheless both approaches agree in
the order-of-magnitude estimate of the expected sensitiv-
ity on the TGC.

We conclude by summarizing the results of our study:

1. We have presented a five-parameter description of the
non-standard trilinear gauge couplings, which includes
all gauge-invariant contributions to the lowest order.
We then analysed their contribution to the semilep-
tonic reactions e+e− → `−ν̄` qq̄′ for ` = e and ` = µ
at LC energies, and showed that a measurement of all
five parameters is possible, with a sensitivity cover-
ing a rather wide range starting from 1.1 × 10−2 (1sd)
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at 360 GeV for α̃BW , (worst case), and going down to
3×10−4 (1sd) at 800 GeV for αW and α̃W , (best case).

2. The electron channel, due to the onset of the single-
W production mode, gives the dominant contribution
to the total cross section at LC energies, whereas the
muon channel exhibits a higher sensitivity on the TGC
parameters. Therefore their overall contribution to the
error on the TGC determination become equally im-
portant.

3. Polarization effects are important in order to disen-
tangle different TGC contributions, leading to a sub-
stantial improvement of the sensitivity on the TGC
parameters, especially for αBΦ and α̃BW .
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34. A. De Rújula, M.B. Gavela, O. Pène and F.J. Vegas,

Nucl. Phys. B357 (1991) 311; A. Bilal, E. Massó and
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